Download books » Education, Learning » Download PDF Pandas for Everyone: Python Data Analysis

Pandas for Everyone: Python Data Analysis

Pandas for Everyone: Python Data Analysis
Date: January 5, 2018
ISBN: 0134546938
Language: English
Number of pages: 411 pages
Format: True PDF
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python

Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.

Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems.

Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.

Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem.

Work with DataFrames and Series, and import or export data
Create plots with matplotlib, seaborn, and pandas
Combine datasets and handle missing data
Reshape, tidy, and clean datasets so they’re easier to work with
Convert data types and manipulate text strings
Apply functions to scale data manipulations
Aggregate, transform, and filter large datasets with groupby
Leverage Pandas’ advanced date and time capabilities
Fit linear models using statsmodels and scikit-learn libraries
Use generalized linear modeling to fit models with different response variables
Compare multiple models to select the “best”
Regularize to overcome overfitting and improve performance
Use clustering in unsupervised machine learning



Download Pandas for Everyone: Python Data Analysis




Resolve captcha to access download link!

Information
Users of Guests are not allowed to comment this publication.
RSS
2019-2025. All books on the site are laid out only for informational purposes.