Algorithms and Data Structures for Massive Datasets
Date: August 16th, 2022
ISBN: 1617298034
Language: English
Number of pages: 304 pages
Format: EPUB
Add favorites
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets.
In Algorithms and Data Structures for Massive Datasets you will learn:
• Probabilistic sketching data structures for practical problems
• Choosing the right database engine for your application
• Evaluating and designing efficient on-disk data structures and algorithms
• Understanding the algorithmic trade-offs involved in massive-scale systems
• Deriving basic statistics from streaming data
• Correctly sampling streaming data
• Computing percentiles with limited space resources
Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You'll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there's no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you'll find the sweet spot of saving space without sacrificing your data's accuracy.
About the technology
Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud.
About the book
Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You'll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases.
What's inside
• Probabilistic sketching data structures
• Choosing the right database engine
• Designing efficient on-disk data structures and algorithms
• Algorithmic tradeoffs in massive-scale systems
• Computing percentiles with limited space resources
In Algorithms and Data Structures for Massive Datasets you will learn:
• Probabilistic sketching data structures for practical problems
• Choosing the right database engine for your application
• Evaluating and designing efficient on-disk data structures and algorithms
• Understanding the algorithmic trade-offs involved in massive-scale systems
• Deriving basic statistics from streaming data
• Correctly sampling streaming data
• Computing percentiles with limited space resources
Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You'll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there's no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you'll find the sweet spot of saving space without sacrificing your data's accuracy.
About the technology
Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud.
About the book
Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You'll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases.
What's inside
• Probabilistic sketching data structures
• Choosing the right database engine
• Designing efficient on-disk data structures and algorithms
• Algorithmic tradeoffs in massive-scale systems
• Computing percentiles with limited space resources
Download Algorithms and Data Structures for Massive Datasets
Similar books
Information
Users of Guests are not allowed to comment this publication.
Users of Guests are not allowed to comment this publication.